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We are considering a displacement field in the isotropic elastic medium 
which occupies a half-plane whose Lam&s coefficients and density are 
arbitrary smooth functions of the depth. The boundary is assumed to be 
stress-free. An exact solution is constructed in the form of a mono- 
chromatic wave, which is then investigated asymptotically for high fre- 
quencies. It turns out that there exists a solution analogous to the 
ordinary Rayleigh wave in the homogeneous elastic half-plane. An ex- 
pression for the correction term in the asymptotic representation of 
the dispersion of the phase velocity is obtained. 

Let the half-plane - 03 < x < + a~, z > 0 be occupied by an elastic 

medium with Lax&s coefficients h(z), p(z) and density p(z). which are 
sufficiently smooth functions of the depth Z. It is required to find the 
displacement vector U(X, Z, t) = (u~(x, z, t), a,(~, z, t)). which for 

2 >o. t > 0 satisfies the equations of the dynamic theory of elasticity 
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and the condition of the stress-free boundary 

a 

Pu = 0 for Z’O, 
IL-z 

P= 
G- 
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(2) 

Vaz 
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We will look for a particular solution of the problem (1) to (2) in 
the form 

u (I, z, t; k) = eikr--qt G(z, k, c) (3) 

which is decreasing with depth. Here k > 0, 5 is a complex parameter. 

The substitution of (3) into (1) and (2) yields for 6 the system of 
equations 

.-$G+ ikA-& G + (ik)S BG + C $G+ikDG=O (4) 

and the boundary condition 

&G+ikEG=O, z=o (5) 

where the elements of matrices A, B, C, D, E of the second order depend 
on z and u (a = (k-l). 

Let G(~)(z, k, a) and O(‘) (z, k, u) be two linearly independent solu- 

tions of the system (4). which decrease with depth. We now choose the 
constants a and p so as to have the solution IS(~) + PO(‘) of the system 
(4) satisfy the condition (5). It is easy to see that a and p are deter- 
mined from the system of equations 

D, (k, c) o + D, (k, o)B = 0, E, (k, +x +E, (k, o)B = 0 (5) 

where 

D, (k, a) = .& GF) + ikCp) 
I ( r=o 

P=+ O<P<$ 

E,(k, CT) = -.& G$“) j- ik (1 - 2p) C’,“) 
)I Z=a 

(7) 

The expressions for DS and E, are analogous to the above. Obviously, 
to the non-zero solutions of the problem (4) and (5) there correspond 
in the complex plane a the zeros of the function 

A (k, 4 = D, 0~ 4 E, (k, 4 - E,, (k, 4 D, (k, 4 (8) 

and vice versa, to each solution u (k) of the equation A(k, a) = 0 there 
corresponds a solution of the probiems (1) and (2) of the form 
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(9) 

where a and p are not equal to zero simultaneously. 

For the asymptotic investigation of the roots of the equation A(k, 

0) = 0 we will need the asymptotic expression for the solutions of the 
system (4) when k - + ~a. It is convenient to write (4) down as a system 
of four equations of the first order. We set 

The system (4) is then reduced to the system 

z’ = ikH (z, a) z + K(z) z (11) 

for the vector z = (21, zg, z3, z4) (the stroke designates differentia- 
tion with respect to z). Here the elements of the fourth-order matrix H 

depend on P(Z). u(z), p(z) and linearly on oz. the elements of K depend 
on P’(Z). v’(z) and p’(z). 

With a fixed, one can apply the classical theorem on the asymptotic 

expansion of solutions of linear systems of ordinary differential equa- 
tions containing a large parameter (see. for instance, E1.23). In 
accordance with the conditions of that theorem we will require that the 
elements of the matrix If be differentiable twice (the elements of the 
matrix K, once) with respect to z on some finite interval [O, 51. If for 
0 <Z < 5 the characteristic numbers Aj(j = 1. 2, 3. 4) of the matrix H 
are distinct and for any fixed pair of indices j, 1 the quantities 
Re [ ik(A. - Al)1 do not change sign. then for a sufficiently large k 

there exists in the interval 10, 0 the fundamental matrix @(z, k, a) of 

the system (11) such that 

Q, (z, k, 6) = 0’0 (2, 4 + “l~~lc) + 0 (k-l)] exp i [ikA (E, a) i- Q 6 @I dF, (W 

0 

Here 0,, is a non-singular matrix which reduces H to the diagonal 

form A 

Oo-‘H(Do = II, @I = a4JV. T = (Do-‘KcDo - Oo-‘@)o’ 

Vlj = Tlj for ifl, 
kj - ?b[ 

Vjj=\x TyVljdk 

; lzi 

Q is a diagonal 
(12) is uniform 

matrix with elements Qjj = Tjj. The estimate in formula 
with respect to z E CO. <I. 
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It is easy to see that the theorem remains valid also in the case 

under consideration, if the pararoeter ff varies in some bounded region S 
in which the conditions of the theorem are satisfied. Here the estimate 
in formula (12) is uniform with respect to u E S. (The region S depends, 
generally speaking, on the choice of 5.) 

It can be readily calculated that in the case under consideration we 

can take 

hx = im, (2, a), b = -imp (2. a), As = im, (2, o), h, = - im, (2, e) 

where 

mr* (2, crt = 1 - cx”F$” (z), rnz (2, a) = 1 - &,a (2) 

fi*Vz) = P (2) I v (k)* a82 (2) = P (2) I P (2) 

In the plane CJ let us make the branch cut (- a, - us(z) 1 and [v,(z), 

i- a) and let us fix the branches of the double-valued functions mp(z, a) 

and ms(z, 0) by the condition mP(z, 0) = ns(z. 0) = i- 1. Let h(z), u(z) 

and p(t) be twice continuously differentiable functions. Obviously, the 
velocity v~(z) of the longitudinal wave and the velocity u,(z) of the 
transverse wave and their reciprocal values n,(z) = ~~~~(2) and a,(z) = 
vsW1( z) aZso have continuous second derivatives. Suppose min v,(z) = o 

for z E LO, <I. It is easy to see that the region S can be chosen in 
such a manner that. for 0 < E < l/2 0, the interval ta, o - ~1 together 
with a portion of its neighborhood falls entirely into S. 

Out of four linearly independent vectors, which are the solutions 
forming the fundamental matrix of the system (ll), two vectors (we will 
call them u(p) and z(‘)) have in the domain S the property of decreas- 
ing with depth, the other two of increasing. Correspondingly, there are 
(for sufficiently large k) two decreasing solutions 8(P) and G(‘) of 
the system (4). According to formulas (10). (12). (7) and (8) we have, 
for k - + a 

A (A, CI) = (ik)a AO (a) f- ikA1 (a) -k 0 (1) (13) 

uniformly in S, 

It is well known [ll, that for fixed k > 0 and z the functions 
Z(P’(Z , k, 0) and z(‘)(z, k, u). and, hence. also fl(k, a) are regular 
with respect to o (at least in the domain S). It turns out that, up to 
an inessential factor, $(o) coincides with the well known Rayleigh’s 
determinant 

RO (4 = if + msa (0, a)]” - 4m, (0.6) mp (0, a) 

which has a positive root v. < us(O), and also Ro’(vo) f 0. The 
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functions AO(o) and A,(U) are regular in the domain S. Hence* if uO E S, 

then for SUfflCientlY large k there exists a root vR(k) of the equation 

A(&, u) such that 

VR (k) = 00 + k-‘vl+ 0 (k-a) (14) 

In order to have u,, E S, it is sufficient to require that v,, < o. On 

sufficiently small intervals CO, g this condition is always satisfied, 

since v0 < u,(O) and the function v,(z) is continuous. However, if at a 

certain depth the velocity u,(z) of the transverse wave becomes equal 

to UO’ this condition vi11 be violated and the asymptotic formula (12) 

vi11 become invalid in the neighborhood of the point u = uo. (The case 

in which the condition u. < u,(z) is violated is not considered here.) 

The correction u1 can be easily computed by means of the formula 

vl = i AI (no) 
Ao’ (~0) 

Namely 

Here 

f v1= v,- 
g 

(15) 

g=2r r-2++np 

( 
,+pZt)>o 

8 

I=(m,+mp) (4 $-- $)+ 2(yl,) (-$--%,+ 

+ 
prm, 

( 

VI p’ 

1 

2(2-r) IL’ 

c 
--e 

2(1--r) T-P -m,+mp P 

- r) (4 - r) 
‘d + (2 2r 

p’ 

-7 1 
m,=)/i--r, mp= )/i--r, r=&<f. mdmp= (i -+) 

The coefficients f and g are real; the sign of f depends on the rela- 

tion of quantities 

P’ (0) +J’ (0) P' (0) 
-’ y(o)’ P (0) P (0) 

. It is easy to show that, if q(t) and v(z) are regular in the 

neighborhood D of a simple root z. of the function V(L), then for 

sufficiently Small 191 the equation T(Z) + qv(z) = 0 has in D a root 
z.(q) such that 

2, (q) - 20 = - q $$- + 0 (q-*1 
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and may vary in different cases. 

For instance, if up and us are constant, so that h(z), cl(z) and p(z) 

are proportional, then 

Vl = cop’ (0) Cl, Cl>0 

if A and CI are constant, p(z) is arbitrary, then 

Vl = - VOP’ (0) 0% s>O 

Thus, if coefficients of the equations of elasticity are sufficiently 
smooth, then in any interval [O. ~1 in which u,(z) > vu, for sufficiently 
large k, there exists a solution of the problem (1) to (2) which has the 
form (9). with u (k) = uR(k). By virtue of formulas (14). (12) and (10) 
this solution fat k * + 0~ has the asymptotic expansion 

un (2, 2, t; k) = W) 

= exp [ik (z - W)lexp(-Wexp(-k f ~~--o¶n,“(E)dS)[F(a)+O (k-l)] 

0 

and, hence. allows the estimate 

U R (2, z, t; k) = 0 (e-k’c*), cs > 0 (17) 

Here, P(z) is a smooth vector; both estimates are uniform with re- 
spect to z in the interval [O, ~1. 

Thus, the nonhomogeneity of the medium causes an additional factor 
exp(- itul). which depends on the values of gradients of A, CI. p on the 
boundary, to appear in the asymptotic expansion of the solution. Since 
the factor vl is real, it does not change the amplitude of the Rayleigh 
wave in its propagation along the boundary of the half-space. 

The Rayleigh waves in nonhomogeneous media of special types have been 

studied before by the method of exact solutions in L3.41. In those 
papers the relations of type (14) of the present article have been ob- 
tained, as well as some more refined effects: the change of amplitude 
of a wave as it is propagated along the surface in the case when the con- 
dition u,(z) > u. is violated, the absence of surface waves for small 
frequencies. 

In conclusion it is necessary to note that the non-steady-state 

Rayleigh waves in a general case of a nonhomogeneous elastic body with 
a surface of an arbitrary shape have been studied by the radial method 
[51. A ccording to the formulas of the radial method, the nonhomogeneity 
with respect to depth causes an additional factor e -itul to appear in 
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the expression for the intensity of the wave front. A comparison of 
values of the quantity UI in the Particular case ~(z)/~(~)=~(z)/~(O~ = 
p(z)/p(O), computed by the formulas of [53 and by formula (15) of the 
present paper. has lead to identical results in both methods. 
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